Abstract
In 1936 Alonzo Church proposed the following thesis: Every effectively computable number-theoretic function is general recursive. The classical mathematician can easily give examples of nonrecursive functions, e.g. by diagonalizing a list of all general recursive functions. But since no such function has been found which is effectively computable, there is as yet no classical evidence against Church's Thesis.The intuitionistic mathematician, following Brouwer, recognizes at least two notions of function: the free-choice sequence (or ordinary number-theoretic function, thought of as the ever-finite but ever-extendable sequence of its values) and the sharp arrow (or effectively definable function, all of whose values can be specified in advance).
Publisher
Cambridge University Press (CUP)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献