A method for studying the integral functionals of stochastic processes with applications: I. Markov chain case

Author:

Puri Prem S.

Abstract

The subject of this paper is the study of the distribution of integrals of the type where {X(t); t ≧ 0} is some appropriately defined continuous-time parameter stochastic process, and f is a suitable non-negative function of its arguments. This subject has also sometimes been labelled as “the occupation time or the sojourn time problem” in literature. These integrals arise in several domains of applications such as in the theory of inventories and storage (see Moran [14], Naddor [15]), in the study of the cost of the flow-stopping incident involved in the automobile traffic jams (see Gaver [8], Daley [3], Daley and Jacobs [4]). The author encountered such integrals while studying certain stochastic models suitable for the study of response time distributions arising in various live situations. In fact in [19], it was shown that such a distribution is equivalent to the study of an integral of the type (1). Again, in the study of response of host to injection of virulent bacteria, Y(t) with f(X(t), t) = bX(t), with b > 0, could be regarded as a measure of the total amount of toxins produced by the bacteria during (0, t), assuming a constant toxin-excretion rate per bacterium. Here X(t) denotes the number of live bacteria at time t, the growth of which is governed by a birth and death process (see Puri [16], [17] and [18]).

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Reference29 articles.

1. Some limit theorems on branching processes and certain related processes;Puri;Sankhya,1969

2. Equations for stochastic path integrals

3. Highway Delays Resulting From Flow-Stopping Incidents

4. Some new results in the mathematical theory of phage-reproduction

5. A class of stochastic models of response after infection in the absence of defense mechanism;Puri;Proc. 5th Berkeley Symp. Math. Statist. Prob.,1967

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CASE STUDIES;Reliability Engineering;2020-11-13

2. Moments of integral-type downward functionals for single death processes;Frontiers of Mathematics in China;2020-08

3. Computational methods for birth‐death processes;WIREs Computational Statistics;2018-01-02

4. A mathematical model to investigate quorum sensing regulation and its heterogeneity in Pseudomonas syringae on leaves;Ecological Complexity;2015-03

5. Bibliography;Introduction to Stochastic Models;2013-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3