Strong axioms of infinity in NFU

Author:

Holmes M. Randall

Abstract

This paper discusses a sequence of extensions of NFU, Jensen's improvement of Quine's set theory “New Foundations” (NF) of [16].The original theory NF of Quine continues to present difficulties. After 60 years of intermittent investigation, it is still not known to be consistent relative to any set theory in which we have confidence. Specker showed in [20] that NF disproves Choice (and so proves Infinity). Even if one assumes the consistency of NF, one is hampered by the lack of powerful methods for proofs of consistency and independence such as are available for use with ZFC; very clever work has been done with permutation methods, starting with [18] and [5], and exemplified more recently by [14], but permutation methods can only be applied to show the consistency or independence of unstratified sentences (see the definition of NFU below for a definition of stratification). For example, there is no method available to determine whether the assertion “the continuum can be well-ordered” is consistent with or independent of NF. There is one substantial independence result for an assertion with nontrivial stratified consequences, using metamathematical methods: this is Orey's proof of the independence of the Axiom of Counting from NF (see below for a statement of this axiom).We mention these difficulties only to reassure the reader of their irrelevance to the present work. Jensen's modification of “New Foundations” (in [13]), which was to restrict extensionality to sets, allowing many non-sets (urelements) with no elements, has almost magical effects.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference22 articles.

1. The Axiom of Choice in Quine's New Foundations for Mathematical Logic

2. New Foundations for Mathematical Logic

3. Solovay Robert , The consistency strength of NFUB, preprint, available through logic e-prints on the WWW.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Index;Conceptions of Set and the Foundations of Mathematics;2020-01-23

2. Bibliography;Conceptions of Set and the Foundations of Mathematics;2020-01-23

3. Concluding Remarks;Conceptions of Set and the Foundations of Mathematics;2020-01-23

4. The Graph Conception;Conceptions of Set and the Foundations of Mathematics;2020-01-23

5. The Stratified Conception;Conceptions of Set and the Foundations of Mathematics;2020-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3