Abstract
In the multi-armed bandit problem, the decision-maker must choose each period a single project to work on. From the chosen project she receives an immediate reward that depends on the current state of the project. Next period the chosen project makes a stochastic transition to a new state, but projects that are not chosen remain in the same state. What happens in a two-armed bandit context if projects not chosen do not remain in the same state? We derive two sufficient conditions for the optimal policy to be myopic: either the transition function for chosen projects has in a certain sense uniformly stronger stochastic dominance than the transition function for unchosen projects, or both transition processes are normal martingales, the variance of which is independent of the history of process choices.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献