An axiomatization for a class of two-cardinal models

Author:

Schmerl James H.

Abstract

In this note we give a simple recursive axiomatization for the class of structures of type (ℶω0). This solves a problem of Vaught which is Problem 13 in the book [1] of Chang and Keisler. The same technique is used to get a recursive axiomatization for the class of κ-like structures where κ is strongly ω-inaccessible.Let us fix throughout some recursive first-order language L, and until further notice let us suppose that included in L is a distinguished unary predicate symbol U. For cardinals κ and λ with κ ≥ λ ≥ ℵ0, we say the structure has type (κ, λ) if card(A)= κ and card . Let K(κ, λ) be the class of all structures of type (κ, λ). For each ordinal α define 2ακby 20κ = κ, and 2ακ= ⋃ {2λ: λ = 2βκ for some β < α} when α > 0. Let Vaught proved the following theorem in [7].Theorem (Vaught). Suppose a is a sentence such that for each n < ω there are κ, λ with κ > 2λn and a model of σ of type (κ, λ). Then whenever κ ≥ λ ≥ ℵ0, the sentence σ has a model of type (κ, λ).

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. First-order modal logic in the necessary framework of objects;Canadian Journal of Philosophy;2016-08

2. Recursive logic frames;MLQ;2006-03

3. There are reasonably nice logics;Journal of Symbolic Logic;1991-03

4. References;Model Theory;1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3