Linear processes are nearly Gaussian

Author:

Mallows C. L.

Abstract

Let U denote the set of all integers, and suppose that Y = {Yu; uU} is a process of standardized, independent and identically distributed random variables with finite third moment and with a common absolutely continuous distribution function (d.f.) G (·). Let a = {au; uU} be a sequence of real numbers with Σuau2 = 1. Then Xu = ΣwawYuw defines a stationary linear process X = {Xu; u ɛ U} with E(Xu) = 0, E(Xu2) = 1 for uU. Let F(·) be the d.f. of X0. We prove that if maxu |au| is small, then (i) for each w, Xw is close to Gaussian in the sense that ∫−∞(F(y) − Φ(y))2dyg maxu |au | where Φ(·) is the standard Gaussian d.f., and g depends only on G(·); (ii) for each finite set (w1, … wn), (Xw1, … Xwn) is close to Gaussian in a similar sense; (iii) the process X is close to Gaussian in a somewhat restricted sense. Several properties of the measures of distance from Gaussianity employed are investigated, and the relation of maxu|au| to the bandwidth of the filter a is studied.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MLGNet: A Multi-Period Local and Global Temporal Dynamic Pattern Integration Network for Long-Term Forecasting;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01

2. Estimating function method for nonnegative autoregressive models;Statistica Neerlandica;2023-04-12

3. RobustPeriod: Robust Time-Frequency Mining for Multiple Periodicity Detection;Proceedings of the 2021 International Conference on Management of Data;2021-06-09

4. A Characterization of Periodicity in the Voltage Time Series of a Riometer;Journal of Geophysical Research: Space Physics;2020-07

5. Subject Index;Spectral Analysis for Univariate Time Series;2020-03-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3