Author:
Gabbay D. M.,De Jongh D. H. J.
Abstract
The intuitionistic propositional logic I has the following (disjunction) property.We are interested in extensions of the intuitionistic logic which are both decidable and have the disjunction property. Systems with the disjunction property are known, for example the Kreisel-Putnam system [1] which is I + (∼ϕ → (ψ ∨ α))→ ((∼ϕ→ψ) ∨ (∼ϕ→α)) and Scott's system I + ((∼ ∼ϕ→ϕ)→(ϕ ∨ ∼ϕ))→ (∼∼ϕ ∨ ∼ϕ). It was shown in [3c] that the first system has the finite-model property.In this note we shall construct a sequence of intermediate logics Dn with the following properties:These systems are presented both semantically and syntactically, using the remarkable correspondence between properties of partially ordered sets and axiom schemata of intuitionistic logic. This correspondence, apart from being interesting in itself (for giving geometric meaning to intuitionistic axioms), is also useful in giving independence proofs and obtaining proof theoretic results for intuitionistic systems (see for example, C. Smorynski, Thesis, University of Illinois, 1972, for independence and proof theoretic results in Heyting arithmetic).
Publisher
Cambridge University Press (CUP)
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献