Abstract
Let W be the usual almost-sure limit random variable in a supercritical simple branching process; we study its tail behaviour. For the left tail, we distinguish two cases, the ‘Schröder' and ‘Böttcher' cases; both appear in work of Harris and Dubuc. The Schröder case is related to work of Karlin and McGregor on embeddability in continuous-time (Markov) branching processes. New results are obtained for the Böttcher case; there are links with recent work of Barlow and Perkins on Brownian motion on a fractal. The right tail is also considered. Use is made of recent progress in Tauberian theory.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献