Abstract
In its simplest form the theory of Markov chains states that, if the (i,j) element of matrix M is the probability pij of a one-step transition from state i to state j, then the (ij) element of the matrix Mk gives the probability of transition from state i to state j in k steps. Since the probabilities of transition to the different states add to 1, the sum of the elements in any row of M is necessarily equal to 1. (Readers are warned that in some elementary treatments the alternative convention is adopted of writing pij in the (j,i) position, so that the column sums are 1, in order that the probability vectors should be column matrices, which are more familiar in school mathematics.)
Publisher
Cambridge University Press (CUP)
Reference3 articles.
1. Flow graph solutions of linear algebraic equations;Coates;Trans. Inst. Radio Engrs,1959
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献