Abstract
In a multitype critical age dependent branching process with immigration, the numbers of cell types born by t, divided by t2, tends in law to a one-dimensional (degenerate) law whose Laplace transform is explicitily given. The method of proof makes a correspondence between the moments in the m-dimensional case and the one-dimensional case, for which the corresponding limit theorem is known. Other applications are given, a possible relaxation of moment assumptions, and extensions are indicated.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Limit laws of estimators for critical multi-type Galton–Watson processes;The Annals of Applied Probability;2004-11-01
2. A Multi-type Critical Emigration Branching Process;Journal of Information and Optimization Sciences;1990-09
3. Branching processes. I;Journal of Soviet Mathematics;1987-10