Limit theorems for sums of a sequence of random variables defined on a Markov chain

Author:

Wolfson David B.

Abstract

Let {(Jn, Xn), n ≧ 0} be the standard J–X process of Markov renewal theory. Suppose {Jn, n ≧ 0} is irreducible, aperiodic and positive recurrent. It is shown using the strong mixing condition, that if converges in distribution, where an, bn > 0 (bn ∞) are real constants, then the limit law F must be stable. Suppose Q(x) = {PijHi(x)} is the semi-Markov matrix of {(JnXn), n ≧ 0}. Then the n-fold convolution, Q∗n(bnx + anbn), converges in distribution to F(x)Π if and only if converges in distribution to F. Π is the matrix of stationary transition probabilities of {Jn, n ≧ 0}. Sufficient conditions on the Hi's are given for the convergence of the sequence of semi-Markov matrices to F(x)Π, where F is stable.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Reference11 articles.

1. Limit laws for maxima of a sequence of random variables defined on a Markov chain

2. Limit theorems for sums of chain-dependent processes

3. Weak Convergence of Superpositions of Randomly Selected Partial Sums

4. Ott T. (1973) Infinite divisibility and stability of finite semi-Markov matrices. University of Rochester Report CSS 73–11, 31 July 1973.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strong Limit Theorems for Sums of Random Variables Defined on a Finite Markov Chain;Advances in the Statistical Sciences: Applied Probability, Stochastic Processes, and Sampling Theory;1987

2. A Second bibliography on semi-Markov processes;Semi-Markov Models;1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3