Abstract
One of the main ideas of calculi of natural deduction, as introduced by Jaśkowski and Gentzen, is that assumptions may be discharged in the course of a derivation. As regards sentential logic, this conception will be extended in so far as not only formulas but also rules may serve as assumptions which can be discharged. The resulting calculi and derivations with rules of any finite level are informally introduced in §1, while §§2 and 3 state formal definitions of the concepts involved and basic lemmata. Within this framework, a standard form for introduction and elimination rules for arbitrary n-ary sentential operators is motivated in §4, understood as a contribution to the theory of meaning for logical signs. §5 proves that the set {&, ∨, ⊃, ⋏} of standard intuitionistic connectives is complete, i.e. &, ∨, ⊃, and ⋏ suffice to express each n-ary sentential operator having rules of the standard form given in §4. §6 makes some remarks on related approaches. For an extension of the conception presented here to quantifier logic, see [11].
Publisher
Cambridge University Press (CUP)
Reference13 articles.
1. Logische Konstanten und Regeln. Zur Deutung von Aussagenoperatoren;Schroeder-Heister;Conceptus,1982
2. Schroeder-Heister P. , Untersuchungen zur regellogischen Deutung von Aussagenverknüpfungen, Dissertation, Bonn, 1981.
3. Proofs and the Meaning and Completeness of the Logical Constants
Cited by
152 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献