Author:
Mardia K. V.,Goodall Colin,Walder Alistair
Abstract
In machine vision, objects are observed subject to an unknown projective transformation, and it is usual to use projective invariants for either testing for a false alarm or for classifying an object. For four collinear points, the cross-ratio is the simplest statistic which is invariant under projective transformations. We obtain the distribution of the cross-ratio under the Gaussian error model with different means. The case of identical means, which has appeared previously in the literature, is derived as a particular case. Various alternative forms of the cross-ratio density are obtained, e.g. under the Casey arccos transformation, and under an arctan transformation from the real projective line of cross-ratios to the unit circle. The cross-ratio distributions are novel to the probability literature; surprisingly various types of Cauchy distribution appear. To gain some analytical insight into the distribution, a simple linear-ratio is also introduced. We also give some results for the projective invariants of five coplanar points. We discuss the general moment properties of the cross-ratio, and consider some inference problems, including maximum likelihood estimation of the parameters.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献