Author:
Huang Dawei,Spencer N. M.
Abstract
A random vibration model is investigated in this paper. The model is formulated as a cosine function with a constant frequency and a random walk phase. We show that this model is second-order stationary and can be rewritten as a vector-valued AR(1) model as well as a scalar ARMA(2, 1) model. The linear innovation sequence of the AR(1) model is shown to be a martingale difference sequence while the linear innovation sequence of the ARMA(2, 1) model is only an uncorrelated sequence. A non-linear predictor is derived from the AR(1) model while a linear predictor is derived from the ARMA(2, 1) model. We deduce that the non-linear predictor of this model has less mean square error than that of the linear predictor. This has significance, for example, for predicting seasonal phenomena with this model. In addition, the limit distributions of the sample mean, the finite Fourier transforms and the autocovariance functions are derived using a martingale approach. The limit distribution of autocovariance functions differs from the classical result given by Bartlett's formula.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Reference18 articles.
1. Novel multireceiver communication systems configurations based on optimal estimation theory
2. Huang D. (1994) Statistical modelling and inference for sinusoids with time varying, random phase and amplitude. Tech. Report. submitted for publication.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献