Partial degrees and the density problem

Author:

Cooper S. B.

Abstract

A notion of relative reducibility for partial functions, which coincides with Turing reducibility on the total functions, was first given by S.C. Kleene in Introduction to metamathematics [4]. Following Myhill [7], this was made more explicit in Hartley Rogers, Jr., Theory of recursive functions and effective computability [8, pp. 146, 279], where some basic properties of the partial degrees or (equivalent, but notationally more convenient) the enumeration degrees, were derived. The question of density of this proper extension of the degrees of unsolvability was left open, although Medvedev's result [6] that there are quasi-minimal partial degrees (that is, nonrecursive partial degrees with no nonrecursive total predecessors) is proved.In 1971, Sasso [9] introduced a finer notion of partial degree, which also contained the Turing degrees as a proper substructure (intuitively, Sasso's notion of reducibility between partial functions differed from Rogers' in that computations terminated when the oracle was asked for an undefined value, whereas a Rogers computation could be thought of as proceeding simultaneously along a number of different branches of a ‘consistent’ computation tree—cf. Sasso [10]). His construction of minimal ‘partial degrees’ [11], while of interest in itself, left open the analogous problem for the more standard partial degree structure.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference9 articles.

1. Note on degrees of partial functions

2. Degrees of difficulty of the mass problem;Medvedev;Doklady Academii Nauk SSSR,1955

3. Gutteridge Lance , The partial degrees are dense, preprint, 1971 (unpublished).

4. Enumeration reducibility and partial degrees

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The jump hierarchy in the enumeration degrees;Computability;2018-06-07

2. S. Barry Cooper (1943–2015);Computability;2018-06-07

3. A NOTE ON INITIAL SEGMENTS OF THE ENUMERATION DEGREES;The Journal of Symbolic Logic;2014-06

4. Goodness in the enumeration and singleton degrees;Archive for Mathematical Logic;2010-06-19

5. Cupping Δ20 enumeration degrees to 0e′;Mathematical Structures in Computer Science;2009-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3