Encodability of Kleene's O

Author:

Jockusch Carl G.,Soare Robert I.

Abstract

Let ω be the nonnegative integers. G. E. Sacks once asked whether there exists an infinite Xω such that, for all YX, ω1Yω1 where ω1 is the first nonrecursive ordinal. In this note we negatively answer this question by giving a simple proof that for every infinite set Xω there exists YX such that the first recursively inaccessible ordinal. This is accomplished by proving that Hα is hyper-arithmetic in Y whereHα is the αth hyperjump of the empty set ∅, defined in a suitable sense for all ordinals Background information and undefined notation can be found in Rogers [11]. In particular, we write AhB(A ≤T B) if A is hyperarithmetical (recursive) in B, and AhB if AhB and BhA. We will say that a set A is hyperarithmetically (recursively) encodable if, for every infinite set Xω, there exists YX such that AhY (ATY). For any set A (hyperdegree a) let A′ (a′) denote the hyperjump of A (a). Let 0 denote the hyperdegree of ∅. A function f majorizes a function g if f(n)g(n) for every n. E1 is the representing (type-2) functional ofintroduced by Tugué [13] (also Kleene [6]). Let be the smallest ordinal which is not the order type of any well-ordering recursive in E1. Information on can be found in Richter [9] and [10].

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference13 articles.

1. Predicates recursive in a type-2 object and Kleene hierarchies;Tugué;Commentarii Mathematici Universitatis Sancti Pauli,1960

2. Recursive functionals and quantifiers of finite types, II;Kleene;Transactions of the American Mathematical Society,1963

3. Jockusch C. G. Jr. , Encodable sets (in preparation).

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Π10-Encodability and Omniscient Reductions;Notre Dame Journal of Formal Logic;2019-01-01

2. Classes of Polish spaces under effective Borel isomorphism;Memoirs of the American Mathematical Society;2016-03

3. HYPERARITHMETICALLY ENCODABLE SETS;T AM MATH SOC;1978

4. Hyperarithmetically encodable sets;Transactions of the American Mathematical Society;1978

5. Happy families;Annals of Mathematical Logic;1977-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3