Nowhere precipitousness of some ideals

Author:

Matsubara Yo,Shioya Masahiro

Abstract

In this paper we will present a simple condition for an ideal to be nowhere precipitous. Through this condition we show nowhere precipitousness of fundamental ideals on Pkλ, in particular the non-stationary ideal NS under cardinal arithmetic assumptions.In this section I denotes a non-principal ideal on an infinite set A. Let I+ = PA / I (ordered by inclusion as a forcing notion) and IX = {YA: YXI}, which is also an ideal on A for XI+. We refer the reader to [8, Section 35] for the general theory of generic ultrapowers associated with an ideal. We recall I is said to be precipitous if ⊨I+ “Ult(V, Ġ) is well-founded” [9].The central notion of this paper is a strong negation of precipitousness [1]:Definition. I is nowhere precipitous if IX is not precipitous for every X ∈ I+ i.e., ⊨I+ “Ult(V, Ġ) is ill-founded.”It is useful to characterize nowhere precipitousness in terms of infinite games (see [11, Section 27]). Consider the following game G(I) between two players, Nonempty and Empty [5]. Nonempty and Empty alternately choose XnI+ and YnI+ respectively so that XnYnn+1. After ω moves, Empty wins the game if⋂n<ωXn=⋂n<ωYn = Ø.See [5, Theorem 2] for a proof of the following characterization.Proposition. I is nowhere precipitous if and only if Empty has a winning strategy in G(I).

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference12 articles.

1. Martin's Maximum, Saturated Ideals, and Non-Regular Ultrafilters. Part I

2. Saturation properties of ideals in generic extensions II;Baumgartner;Transactions of the American Mathematical Society,1982

3. Projecting precipitousness;Galvin;Israel Journal of Mathematics,1991

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. μ-clubs of P(λ): Paradise in heaven;Annals of Pure and Applied Logic;2025-01

2. MENAS’S CONJECTURE REVISITED;The Bulletin of Symbolic Logic;2023-05-08

3. The nonstationary ideal on $$P_\kappa (\lambda )$$ P κ ( λ ) for $$\lambda $$ λ singular;Archive for Mathematical Logic;2017-05-19

4. On skinny stationary subsets of;The Journal of Symbolic Logic;2013-06

5. Normal restrictions of the noncofinal ideal on Pκ(λ);Fundamenta Mathematicae;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3