Some relations between classical and constructive mathematics

Author:

Beeson Michael

Abstract

This paper is devoted to the general question, which assertions φ have the property,if φ is provable classically, then φ is(*) provable constructively.More generally, we consider the question, what is the “constructive content” of a given classical proof? Our aim is to formulate rules in a form applicable to mathematical practice. Often a mathematician has the feeling that there will be no difficulty constructivizing a certain proof, only a number of routine details; although it can be quite laborious to set them all out. We believe that most such situations will come quite easily under the scope of the rules given here; the metamathematical machinery will then take care of the details.This basic idea is not new; it has been discussed by Gödel and by Kreisel. Kreisel's investigations [Kr] were based on Herbrand's theorem; in unpublished memoranda he has also used Gödel's methods on some examples. These methods of Gödel (the double-negation and Dialectica interpretations) lie at the root of our work here. Previous work, however, has been limited to traditional formal systems of number theory and analysis. It is only recently that formal systems adequate to formalize constructive mathematics as a whole have been developed. Thus, for the first time we are in a position to formulate logical theorems which are easily applicable to mathematical practice. It is this program which we here carry out.Now that the work has been placed in some historical context, let us return to the main question: which φ have the property (*)? Upon first considering the problem, one might guess that any φ which makes no existential assertions (including disjunctions) should have the property (*).

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference9 articles.

1. Beeson M. , Principles of continuous choice and continuity of functions in formal systems for constructive mathematics, Annals of Mathematical Logic (to appear).

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3