Abstract
We consider the recursive equation x(n + 1)= A(n)⊗x(n), where x(n + 1) and x(n) are ℝk-valued vectors and A(n) is an irreducible random matrix of size k × k. The matrix-vector multiplication in the (max, +) algebra is defined by (A(n)⊗x(n))= maxj (Aij (n) + xj(n)). This type of equation can be used to represent the evolution of stochastic event graphs which include cyclic Jackson networks, some manufacturing models and models with general blocking (such as Kanban). Let us assume that the sequence {A(n), n ∈ ℕ} is i.i.d. or, more generally, stationary and ergodic. The main result of the paper states that the system couples in finite time with a unique stationary regime if and only if there exists a set of matrices such that and the matrices have a unique periodic regime.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Reference35 articles.
1. Valeurs propres et vecteurs propres dans les dioïdes et leur interprétation en théorie des graphes;Gondran;EDF Math. Inf.,1977
2. Two ergodicity criteria for stochastically recursive sequences
3. Discrete event systems with stochastic processing times
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献