Abstract
It is possible to interpret the classical central limit theorem for sums of independent random variables as a convergence rate result for the law of large numbers. For example, if Xi, i = 1, 2, 3, ··· are independent and identically distributed random variables with EXi = μ, var Xi = σ2 < ∞ and then the central limit theorem can be written in the form
This provides information on the rate of convergence in the strong law as . (“a.s.” denotes almost sure convergence.) It is our object in this paper to discuss analogues for the super-critical Galton-Watson process.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献