Definability and descent

Author:

Ballard David,Boshuck William

Abstract

The present note offers a short argument for the descent theorems of Zawadowski [10] (originally [9]) and Makkai [6], which were conjectured by Pitts after the descent theorem of Joyal and Tierney [3] for open geometric morphisms of (Grothendieck) toposes. The original proofs, which involve variants of Makkai's [5] duality for first order logic, are rather involved and there has been considerable interest in locating simpler proofs. Viewed categorically, the descent theorems establish a bicategorical exactness property (conservative morphisms are effective descent) for pretop (the 2-category of small pretoposes, pretopos functors, and natural transformations), for exact (exact categories, exact functors, and natural transformations), and for bpretop* (Boolean pretoposes, pretopos functors, and natural isomorphisms). Viewed logically, they fragment into a familiar Beth/Tarski-type definability theorem and a covering theorem for certain functors on PCΔ-categories (groupoids, in the Boolean case); the latter (as the former) is a arithmetical statement about the syntax of first order logic ([6, §3])).The argument here involves special models and, independently, a continuity lemma of Makkai. The use of special models is axiomatic in that only a few properties (listed below) are needed. The continuity lemma, 9.1 of [6], is established via forcing and can be read independently of the rest of that paper. Because of its interest to both the model theorist and the category theorist, the argument is first given as straight model theory and afterwards it is briefly indicated how the descent theorems follow.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pitts monads and a lax descent theorem;Tbilisi Mathematical Journal;2015-06-01

2. Universal models and definability;Mathematical Proceedings of the Cambridge Philosophical Society;2011-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3