Abstract
Let v(x, t) denote the displacement of an infinitely long, idealized string performing damped vibrations caused by white noise.Upper and lower bounds for the distribution of maxsv(x, s) and maxxv(x, t) are presented. The results are obtained by adapting Lévy-type inequalities and exploiting a connection of v(x, t) with the Ornstein-Uhlenbeck process through Slepian's theorem.The case of forced-damped vibrations is also analysed. Finally, a section is devoted to the case of a semi-infinite string performing damped vibrations.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献