A simplification of the Bachmann method for generating large countable ordinals

Author:

Bridge Jane

Abstract

In [2] Bachmann showed how a hierarchy of normal functions on the countable ordinals Ω can be constructed using certain uncountable ordinals together with appropriate fundamental sequences for limit ordinals, as indexing ordinals for the hierarchy. This method, explained in more detail in §1 below, has been generalized by Pfeiffer [6] and Isles [4] to produce larger hierarchies. Using the hierarchies constructed in this way it is possible, as an immediate consequence of the definitions, to assign ω-sequences 〈αnn∈ω to limit ordinals α in an initial segment I of Ω such that . Indeed this was the motivation for Bachmann's original construction. However the initial segments I constructed in this way are of interest even without the fundamental sequences because they occur naturally as the proof-theoretic ordinals associated with particular formal theories. The fundamental sequences necessary for the Bachmann method are not intrinsically of interest proof-theoretically and only serve to obscure the definitions of the associated initial segments. Feferman and Weyhrauch [9] suggested an alternative definition for a sequence of functions on the countable ordinals. This definition was generalized by Aczel [1] who showed how the new functions corresponded to those in Bachmann's hierarchy. (Independently, Weyhrauch established the same results for an initial segment of the sequence of Bachmann functions, i.e. those functions indexed by α < εΩ+1.)

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference9 articles.

1. Weyhrauch R. , Relations between some hierarchies of ordinal functions and functionals, Dissertation, Stanford University, 1972.

2. Schütte K. , Ein Bezeichnungssystem für Ordinalzahlen (to appear).

3. Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordnungszahlen;Bachmann;Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich,1950

4. Aczel P. , A new approach to the Bachmann method for describing countable ordinals, preliminary summary (mimeographed).

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Performance of Axiom Systems;Axiomatic Thinking II;2022

2. Pure Σ2-elementarity beyond the core;Annals of Pure and Applied Logic;2021-10

3. … and so on: Schütte on Naming Ordinals;The Legacy of Kurt Schütte;2020

4. A Glimpse of $$ \sum_{3} $$-elementarity;The Legacy of Kurt Schütte;2020

5. Well-Partial Orderings and their Maximal Order Types;Trends in Logic;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3