Abstract
Let Sn = X1 + · · · + Xn be a random walk with negative drift μ < 0, let F(x) = P(Xk ≦ x), v(u) =inf{n : Sn > u} and assume that for some γ > 0 is a proper distribution with finite mean Various limit theorems for functionals of X1,· · ·, Xv(u) are derived subject to conditioning upon {v(u)< ∞} with u large, showing similar behaviour as if the Xi were i.i.d. with distribution For example, the deviation of the empirical distribution function from properly normalised, is shown to have a limit in D, and an approximation for by means of Brownian bridge is derived. Similar results hold for risk reserve processes in the time up to ruin and the GI/G/1 queue considered either within a busy cycle or in the steady state. The methods produce an alternate approach to known asymptotic formulae for ruin probabilities as well as related waiting-time approximations for the GI/G/1 queue. For example uniformly in N, with WN the waiting time of the Nth customer.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Reference48 articles.
1. A class of approximations of ruin probabilities
2. Thorin O. (1971) Further remarks on the ruin problem in case the epochs of claims form a renewal process. Part I. Skand. Aktuarietidskr., 14–38.
3. Diffusion approximations in collective risk theory
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献