Tapping in Time with Mechanically and Expressively Performed Music

Author:

Drake Carolyn,Penel Amandine,Bigand Emmanuel

Abstract

We investigate how the presence of performance microstructure (small variations in timing, intensity, and articulation) influences listeners' perception of musical excerpts, by measuring the way in which listeners synchronize with the excerpts. Musicians and nonmusicians tapped on a drum in synchrony with six musical excerpts, each presented in three versions: mechanical (synthesized from the score, without microstructure), accented (mechanical, with intensity accents), and expressive (performed by a concert pianist, with all types of microstructure). Participants' synchronizations with these excerpts were characterized in terms of three processes described in Mari Riess Jones's Dynamic Attending Theory: attunement (ease of synchronization), use of a referent level (spontaneous synchronization rate), and focal attending (range of synchronization levels). As predicted by beat induction models, synchronization was better with the temporally regular mechanical and accented versions than with the expressive versions. However, synchronization with expressive versions occurred at higher (slower) levels, within a narrower range of synchronization levels, and corresponded more frequently to the theoretically correct metrical hierarchy. We conclude that performance microstructure transmits a particular metrical interpretation to the listener and enables the perceptual organization of events over longer time spans. Compared with nonmusicians, musicians synchronized more accurately (heightened attunement), tapped more slowly (slower referent level), and used a wider range of hierarchical levels when instructed (enhanced focal attending), more often corresponding to the theoretically correct metrical hierarchy. We conclude that musicians perceptually organize events over longer time spans and have a more complete hierarchical representation of the music than do nonmusicians.

Publisher

University of California Press

Subject

Music

Reference32 articles.

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3