Stratification and cut-elimination

Author:

Crabbé Marcel

Abstract

In this paper, we show the normalization of proofs of NF (Quine's New Foundations; see [15]) minus extensionality. This system, called SF (Stratified Foundations) differs in many respects from the associated system of simple type theory. It is written in a first order language and not in a multi-sorted one, and the formulas need not be stratifiable, except in the instances of the comprehension scheme. There is a universal set, but, for a similar reason as in type theory, the paradoxical sets cannot be formed.It is not immediately apparent, however, that SF is essentially richer than type theory. But it follows from Specker's celebrated result (see [16] and [4]) that the stratifiable formula (extensionality → the universe is not well-orderable) is a theorem of SF.It is known (see [11]) that this set theory is consistent, though the consistency of NF is still an open problem.The connections between consistency and cut-elimination are rather loose. Cut-elimination generally implies consistency. But the converse is not true. In the case of set theory, for example, ZF-like systems, though consistent, cannot be freed of cuts because the separation axioms allow the formation of sets from unstratifiable formulas. There are nevertheless interesting partial results obtained when restrictions are imposed on the removable cuts (see [1] and [9]). The systems with stratifiable comprehension are the only known set-theoretic systems that enjoy full cut-elimination.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference19 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theoretical Computer Science: Computability, Decidability and Logic;A Guided Tour of Artificial Intelligence Research;2020

2. On the convergence of reduction-based and model-based methods in proof theory;Logic Journal of IGPL;2009-08-08

3. On the Convergence of Reduction-based and Model-based Methods in Proof Theory;Electronic Notes in Theoretical Computer Science;2008-04

4. Proof normalization modulo;Journal of Symbolic Logic;2003-12

5. What Is a Theory?;STACS 2002;2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3