Abstract
Consider modal propositional formulae, constructed using proposition-letters, connectives and the modal operators □ and ⋄. The semantic structures are frames, i.e., pairs <W, R> with R ⊆ W2. Let F, V be variables ranging respectively over frames and functions from the set of proposition-letters into the powerset of W. Then the relationmay be defined, for arbitrary formulae α, following the Kripke truth-definition. From this relation we may further defineNow, to every modal formula α there corresponds some property Pα of R. A particular example is obtained by considering the well-known translation of modal formulae into formulae of monadic second-order logic with a single binary first-order predicate. For these particular Pα we havefor all F and w ∈ W. These formulae Pα are, however, rather intractable and more convenient ones can often be found. An especially interesting case occurs when Pα may be taken to be some first-order formula. For example, it can be seen thatfor all F and w ∈ W. It is customary to talk about a related correspondence, namely when for all F we haveNote that this correspondence holds whenever the first one above holds.
Publisher
Cambridge University Press (CUP)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献