Author:
Bruss F. Thomas,O'cinneide Colm Art
Abstract
Given n independent, identically distributed random variables, let ρ n denote the probability that the maximum is unique. This probability is clearly unity if the distribution of the random variables is continuous. We explore the asymptotic behavior of the ρ n's in the case of geometric random variables. We find a function Φsuch that (ρ n – Φ(n)) → 0 as n →∞. In particular, we show that ρ n does not converge as n →∞. We derive a related asymptotic result for the expected value of the maximum of the sample. These results arose out of a random depletion model due to Bajaj, which was the original motivation for this paper and which is included.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献