Abstract
AbstractA small large cardinal upper bound in V for proving when certain subsets of ω1 (including the universally Baire subsets) are precisely those constructible from a real is given. In the core model we find an exact equivalence in terms of the length of the mouse order; we show that ∀B ⊆ ω1 [B is universally Baire ⇔ B ϵ L[r] for some real r] is preserved under set-sized forcing extensions if and only if there are arbitrarily large “admissibly measurable” cardinals.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献