Abstract
AbstractThe first example of a simultaneous inductive-recursive definition in intuitionistic type theory is Martin-Löfs universe à la Tarski. A set U0of codes for small sets is generated inductively at the same time as a function T0, which maps a code to the corresponding small set, is defined by recursion on the way the elements of U0are generated.In this paper we argue that there is an underlyinggeneralnotion of simultaneous inductive-recursive definition which is implicit in Martin-Löf's intuitionistic type theory. We extend previously given schematic formulations of inductive definitions in type theory to encompass a general notion of simultaneous induction-recursion. This enables us to give a unified treatment of several interesting constructions including various universe constructions by Palmgren, Griffor, Rathjen, and Setzer and a constructive version of Aczel's Frege structures. Consistency of a restricted version of the extension is shown by constructing a realisability model in the style of Allen.
Publisher
Cambridge University Press (CUP)
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献