Generalizations of the one-dimensional version of the Kruskal-Friedman theorems

Author:

Gordeev L.

Abstract

The paper [Schütte + Simpson] deals with the following one-dimensional case of Friedman's extension (see in [Simpson 1]) of Kruskal's theorem ([Kruskal]). Given a natural number n, let Sn+1 be the set of all finite sequences of natural numbers <n + 1. If s1 = (a0,…,ak) Sn+1 and s2 = (b0,…,bm) Sn + 1, then a strictly monotone function f: {0,…, k} → {0,…, m} is called an embedding of s1 into s2 if the following two assertions are satisfied:1) ai, = bf(i), for all i < k;2) if f(i) < j < f(i + 1) then bj > bf(i+1), for all i < k, j < m.Then for every infinite sequence s1, s2,…,sk,… of elements of Sn + 1 there exist indices i < j and an embedding of si into Sj. That is, Sn+1 forms a well-quasi-ordering (wqo) with respect to embeddability. For each n, this statement W(Sn+1) is provable in the standard second order conservative extension of Peano arithmetic. On the other hand, the proof-theoretic strength of the statements W(Sn+1) grows so fast that this formal theory cannot prove the limit statement ∀nW(Sn+1). The appropriate first order -versions of these combinatory statements preserve their proof-theoretic strength, so that actually one can speak in terms of provability in Peano arithmetic. These are the main conclusions from [Schütte + Simpson].We wish to extend this into the transfinite. That is, we take an arbitrary countable ordinal τ > 0 instead of n + 1 and try to obtain an analogous “strong” combinatory statement about finite sequences of ordinals < τ.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference16 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3