Markov chain models, time series analysis and extreme value theory

Author:

Poskitt D. S.,Chung Shin-Ho

Abstract

Markov chain processes are becoming increasingly popular as a means of modelling various phenomena in different disciplines. For example, a new approach to the investigation of the electrical activity of molecular structures known as ion channels is to analyse raw digitized current recordings using Markov chain models. An outstanding question which arises with the application of such models is how to determine the number of states required for the Markov chain to characterize the observed process. In this paper we derive a realization theorem showing that observations on a finite state Markov chain embedded in continuous noise can be synthesized as values obtained from an autoregressive moving-average data generating mechanism. We then use this realization result to motivate the construction of a procedure for identifying the state dimension of the hidden Markov chain. The identification technique is based on a new approach to the estimation of the order of an autoregressive moving-average process. Conditions for the method to produce strongly consistent estimates of the state dimension are given. The asymptotic distribution of the statistic underlying the identification process is also presented and shown to yield critical values commensurate with the requirements for strong consistency.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal trend-following rules in two-state regime-switching models;Journal of Asset Management;2024-05-24

2. Optimal trend-following with transaction costs;International Review of Financial Analysis;2023-11

3. Risks and Non-Linear Dynamics;Risk Measurement;2019

4. A New Approach to Volatility Modeling: The Factorial Hidden Markov Volatility Model;Journal of Business & Economic Statistics;2018-06-04

5. A New Approach to Volatility Modeling: The High-Dimensional Markov Model;SSRN Electronic Journal;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3