A coding theorem for isols

Author:

Ellentuck Erik

Abstract

In [1] it is shown that for every sequence x = 〈xn : nω〉 ∈ Xω Λ there is an isol xω (essentially an immunized product) such thatHere we have used the notation: Λ = the isols, ω = the nonnegative integers, pn is the nth prime rational integer starting with p0 = 2, ∣ denotes divisibility and ∤ its negation. If p is an arbitrary prime, pyx, pzx, and y < z then py+1x. In particular since yω is comparable with every element of Λ, the conditions pyx and py+1x uniquely determine y. Thus every sequence xXωω is uniquely determined by an xω satisfying (1) and consequently may be used as a “code” for that sequence. In Theorem 1 it is shown that (1) does not uniquely determine the values of an arbitrary sequence xXωΛ, however in Theorem 3 we find a different scheme which does. At the very end of the paper we give some reasons why coding theorems are useful. It should also be mentioned that for a coding theorem to be meaningful it is necessary to restrict the operations by which a sequence can be recaptured from its code. Otherwise a triviality results. Our coding theorem will allow all operations which are first order definable in Λ with respect to addition, multiplication, and exponentiation. We conjecture that the latter operation is really necessary.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference6 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Work of Anil Nerode: A Retrospective;Logical Methods;1993

2. Polynomially isolated sets;Lecture Notes in Mathematics;1990

3. Some Properties of ∀∃ Models in the Isols;Proceedings of the American Mathematical Society;1986-07

4. Some properties of ∀∃ models in the isols;Proceedings of the American Mathematical Society;1986

5. Second order logic and first order theories of reducibility orderings*;The Kleene Symposium;1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3