Abstract
We show that for a certain storage network the backward content process is increasing, and when the net input process has stationary increments then, under natural stability conditions, the content process has a stationary version under which the cumulative lost capacities have stationary increments. Moreover, for the feedforward case, we show that under some minimal conditions, two content processes with net input processes which differ only by initial conditions can be coupled in finite time and that the difference of two content processes vanishes in the limit if the difference of the net input processes monotonically approaches a constant. As a consequence, it is shown that for the natural stability conditions, when the net input process has stationary increments, the distribution of the content process converges in total variation to a proper limit, independent of initial conditions.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献