-arithmetic and transfinite induction

Author:

Rose H. E.

Abstract

A hierarchy of systems of quantifier-free elementary recursive arithmetics, based on the Grzegorczyk hierarchy of functions, was set up in [2] and some meta-mathematical properties of these systems were developed. The Grzegorczyk hierarchy has been extended recently, mainly by Löb and Wainer [5], and our metamathematical developments may be similarly extended; the αth member of this hierarchy of formal systems will be denoted -arithmetic throughout. The main result in [2] was: For α > 1, -arithmetic can be proved consistent in -arithmetic. In this paper we shall continue this work in particular, beginning with this consistency result, we shall find (for α > 1) the order type of the weakest simple transfinite induction scheme which is independent of -arithmetic, thus giving a ‘measure of the complexity of derivations’ of these systems. For example we shall show that transfinite induction on a sequence of type ωω is a nonderivable rule of primitive recursive arithmetic (-arithmetic). This particular result was proved by Guard in [4] by a specialisation of a version of Gentzen's proof that ∈0-transfinite induction is independent of some standard formal systems of arithmetic with quantifiers. These methods can be adapted to our hierarchy but require what we might term an ‘ωω-jump’—that is if β is the largest ordinal for which transfinite induction up to β is derivable in the system in question then a scheme of transfinite induction up to β·ωω is independent. The proof presented in this paper requires only an ‘ω-jump’ and allows more precise results to be obtained for the systems in the extended Grzegorczyk hierarchy; it is also more direct and less proof-theoretic in character. We show that the consistency of -arithmetic (for α > 1) can be proved in a system obtained by adding to -arithmetic a transfinite induction scheme up to ω2, and that this induction scheme can be adapted to obtain the required result by increasing the ordinal and simultaneously decreasing the complexity of the functions involved in the induction scheme (detailed definitions of these concepts will be given in the next section).

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference10 articles.

1. Wainer S. S. , Hierarchies of number-theoretic functions, Ph.D. thesis, University of Leeds, 1969.

2. A Note on Reducible Induction Schemata

3. Ternary Recursive Arithmetic.

4. Löb M. H. and Wainer S. S. , Hierarchies of number-theoretic functions, (to appear).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Undecidable complexity statements in -arithmetic;Journal of Symbolic Logic;1989-06

2. Built-up systems of fundamental sequences and hierarchies of number-theoretic functions;Archiv für Mathematische Logik und Grundlagenforschung;1977-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3