Abstract
AbstractLet be an admissible structure. A cPCd() class is the class of all models of a sentence of the form , where is an -r.e. set of relation symbols and Φ is an -r.e. set of formulas of ℒ∞,ω that are in . The main theorem is a generalization of the following: Let be a pure countable resolvable admissible structure such that is not Σ-elementarily embedded in HYP(). Then a class K of countable structures whose universes are sets of urelements is a cPCd() class if and only if for some Σ formula σ (with parameters from ), is in K if and only if is a countable structure with universe a set of urelements and σ, where , the smallest admissible set above relative to , is a generalization of HYP to structures with similarity type Σ over that is defined in this article. Here we just note that when Lα is admissible, HYPLα() is Lβ() for the least β ≥ α such that Lβ() is admissible, and so, in particular, that is just HYP() in the usual sense when has a finite similarity type.The definition of is most naturally formulated using Adamson's notion of a +-admissible structure (1978). We prove a generalization from admissible to +-admissible structures of the well-known truncation lemma. That generalization is a key theorem applied in the proof of the generalized Spector-Gandy theorem.
Publisher
Cambridge University Press (CUP)
Reference18 articles.
1. Lavine Shaughan “ Lavine Michael A. ”, Spector-Gandy and generalized reduction theorems for model-theoretic analogs of the class of coanalytic sets, Ph.D. thesis, University of California, Berkeley, California.
2. Admissible sets and the saturation of structures
3. Hyperarithmetical quantifiers
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献