Denumerable Markov processes with bounded generators: a routine for calculating pij(∞)

Author:

Jensen Arne,Kendall David

Abstract

1. Let the (honest) Markov process with transition functions (pij(0)) have transition rates (qij) and suppose that, for some M, so that the matrix Q = (qij) determines a bounded operator on the Banach space l1 by right-multiplication. Then in the terminology of [8], (pp. 12 and 19) Q will be bounded and ΩF will be a closed restriction of Q with dense domain, so that ΩF = Q; that is, we shall have a process whose associated semigroup has a bounded generator. In these circumstances Theorem 10.3.2 of [2] applies and the matrix Pt = (pij(t)) is given by where exp{·} denotes the function defined by the exponential power-series. We shall be interested here (as in [5] and [9]) in the determination of the limit matrix P = (limt→∞pij(t)).

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perturbations of countable Markov chains and processes;Annals of the Institute of Statistical Mathematics;1980-12

2. Discrete time methods for simulating continuous time Markov chains;Advances in Applied Probability;1976-12

3. Discrete time methods for simulating continuous time Markov chains;Advances in Applied Probability;1976-12

4. Continuous time Markovian decision processes average return criterion;Journal of Mathematical Analysis and Applications;1975-10

5. Continuous Parameter Stochastic Processes;Stochastic processes and applications in biology and medicine I;1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3