Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process

Author:

Van Doorn Erik A.

Abstract

This paper is concerned with two problems in connection with exponential ergodicity for birth-death processes on a semi-infinite lattice of integers. The first is to determine from the birth and death rates whether exponential ergodicity prevails. We give some necessary and some sufficient conditions which suffice to settle the question for most processes encountered in practice. In particular, a complete solution is obtained for processes where, from some finite state n onwards, the birth and death rates are rational functions of n. The second, more difficult, problem is to evaluate the decay parameter of an exponentially ergodic birth-death process. Our contribution to the solution of this problem consists of a number of upper and lower bounds.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On One Approach to Obtaining Estimates of the Rate of Convergence to the Limiting Regime of Markov Chains;Mathematics;2024-09-06

2. Full classification of dynamics for one-dimensional continuous-time Markov chains with polynomial transition rates;Advances in Applied Probability;2022-09-12

3. Birth and death processes in interactive random environments;Queueing Systems;2022-08-12

4. Strong Gaussian approximation for cumulative processes;Stochastic Processes and their Applications;2022-08

5. Index;Orthogonal Polynomials in the Spectral Analysis of Markov Processes;2021-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3