Individually optimal routing in parallel systems

Author:

Kumar P. R.,Walrand J.

Abstract

Jobs arrive at a buffer from which there are several parallel routes to a destination. A socially optimal policy is one which minimizes the average delay of all jobs, whereas an individually optimal policy is one which, for each job, minimizes its own delay, with route preference given to jobs at the head of the buffer. If there is a socially optimal policy for a system with no arrivals, which can be implemented by each job following a policy γ in such a way that no job ever utilizes a previously declined route, then we show that such a γ is an individually optimal policy for each job. Moreover γ continues to be individually optimal even if the system has an arbitrary arrival process, subject only to the restriction that past arrivals are independent of future route-traversal times. Thus, γ is an individually optimal policy which is insensitive to the nature of the arrival process. In the particular case where the times to traverse the routes are exponentially distributed with a possibly different mean time for each of the parallel routes, then such an insensitive individually optimal policy does in fact exist and is moreover trivially determined by certain threshold numbers. A conjecture is also made about more general situations where such individually optimal policies exist.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Selected Task Allocation;Manufacturing & Service Operations Management;2021-11

2. Influencing waiting lists;Journal of Economic Theory;2021-07

3. Improving Airport Security Screening System in Terms of Efficiency and Fairness Via Network Model;Recent Developments in Data Science and Business Analytics;2018

4. AN INDIVIDUAL AND SOCIALLY OPTIMAL POLICY MINIMIZING EXPECTED FLOW TIMES;Probability in the Engineering and Informational Sciences;2015-03-02

5. Energy-Aware Scheduling on Heterogeneous Processors;IEEE Transactions on Automatic Control;2014-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3