Completeness of the propositions-as-types interpretation of intuitionistic logic into illative combinatory logic

Author:

Dekkers Wil,Bunder Martin,Barendregt Henk

Abstract

AbstractIllative combinatory logic consists of the theory of combinators or lambda calculus extended by extra constants (and corresponding axioms and rules) intended to capture inference. In a preceding paper, [2], we considered 4 systems of illative combinatory logic that are sound for first order intuitionistic propositional and predicate logic. The interpretation from ordinary logic into the illative systems can be done in two ways: following the propositions-as-types paradigm, in which derivations become combinators, or in a more direct way, in which derivations are not translated. Both translations are closely related in a canonical way. In the cited paper we proved completeness of the two direct translations. In the present paper we prove that also the two indirect translations are complete. These proofs are direct whereas in another version, [3], we proved completeness by showing that the two corresponding illative systems are conservative over the two systems for the direct translations. Moreover we shall prove that one of the systems is also complete for predicate calculus with higher type functions.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference3 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Higher-Order Illative Combinatory Logic;The Journal of Symbolic Logic;2013-09

2. Partiality and Recursion in Higher-Order Logic;Lecture Notes in Computer Science;2013

3. Foundations of Mathematics from the Perspective of Computer Verification;Mathematics, Computer Science and Logic - A Never Ending Story;2013

4. A Simple Class of Kripke-Style Models in Which Logic and Computation Have Equal Standing;Logic for Programming, Artificial Intelligence, and Reasoning;2010

5. Lambda Calculus with Types;PERSPECT LOGIC;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3