Abstract
For L a countable first-order language, let L(Q) be logic with the quantifier Qx which means “there exist uncountably many x”. We assume a little familiarity with Keisler's paper [8]. One finds there completeness and compactness theorems for L(Q), as well as an omitting types theorem: a syntactic condition is given for a consistent countable theory to have a model satisfying ∀x⋁Σ(x), where Σ is a countable set of formulas of L(Q). (See also Chang and Keisler [3] for the first-order omitting types theorem, due to Henkin and Orey.) An analogous theorem is proved in Barwise, Kaufmann, and Makkai [1] and in Kaufmann [6] for stationary logic. However, a more general theorem than just an anlaogue to Keisler's is proved there. Conditions are given which are sufficient for a theory T to have models satisfying sentences such as aas1aas2 … aasn⋁Σ(s1, … sn), ∀xaas ∨ Σ(x, s), and so forth. Bruce [2] had asked whether such a theorem can be proved for L(Q). with “aa” replaced by “Q*”, where Q* is ¬Q¬ (“for all but countably many”).
Publisher
Cambridge University Press (CUP)
Reference10 articles.
1. Stationary logic
2. Logic with the quantifier “there exist uncountably many”
3. A new omitting types theorem for L(Q);Kaufmann;Notices of the American Mathematical Society,1977
4. Compact extensions of L(Q) (part 1a)