Abstract
The principal aim of this paper is to exhibit applications of techniques of time series analysis for establishing limit distribution theorems of statistical relevance on a subcritical Galton–Watson process X with immigration. In this approach the results obtained by Heyde and Seneta, Quine, and Klimko and Nelson are re-established in a more concise form on adopting new methods of proof, which seek to unify these results. In addition, Quenouille-type limit theorems on X are proved leading to the construction of Quenouille-type goodness-of-fit tests for X. It appears that Billingsley's central limit theorem for martingales is appropriate for proving the basic result, Theorem 1.1. This is done on converting the entire problem as a martingale problem through a use of Lemma 2 of Venkataraman (1968).
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献