Abstract
In [3] we have associated to a structure an ordinal which gives us information about elementary substructures of the structure. For example a structure whose ascending chain number (as we call the ordinal) is ω could be called Noetherian since all ascending elementary chains inside it are finite (and there are arbitrarily large finite chains). Theorem 2 shows that such structures exist. In fact we prove that for any α < ω1 there is a structure whose ascending chain number is α. The construction is based on the existence of a certain group of permutations of ω (see Theorem 1). The second part of this paper deals with the relevance of the chain number to the study of Jonsson algebras.
Publisher
Cambridge University Press (CUP)
Reference7 articles.
1. Arithmetical extensions of relational systems;Tarski;Compositio Mathematica,1957
2. Countable models of ℵ1-categorical theories
3. Remarks on countable models
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Modeloids. I;Transactions of the American Mathematical Society;1979