Abstract
Let D = D[0, ∞) be the space of all real-valued right-continuous functions on [0, ∞) with limits from the left. For any stochastic process X in D, let the associated supremum process be S(X), wherefor any x ∊ D. It is easy to verify that S: D → D is continuous in any of Skorohod's (1956) topologies extended from D[0,1] to D[0, ∞) (cf. Stone (1963) and Whitt (1970a, c)). Hence, weak convergence Xn ⇒ X in D implies weak convergence S(Xn) ⇒ S(X) in D by virtue of the continuous mapping theorem (cf. Theorem 5.1 of Billingsley (1968)).
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献