Abstract
This paper considers the equilibrium behaviour of the M/G/k group-arrival group-departure loss system. Such a system has k servers whose customers arrive in groups, the arrival epochs of groups being points of a Poisson process. The duration of a service can be characteristic of the group size; however, customers who belong to the same group have equal service times. The customers of a group start being served immediately upon their arrival, unless their number is greater than the number of idle servers. In this case the whole group leaves and does not return later (i.e. is lost). Among other things, a generalization of the Erlang B-formula is given and it is shown that the arrival and departure processes are statistically indistinguishable.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献