Author:
Kunen Kenneth,Tall Franklin D.
Abstract
The use of elementary submodels has become a standard tool in set-theoretic topology and infinitary combinatorics. Thus, in studying some combinatorial objects, one embeds them in a set, M, which is an elementary submodel of the universe, V (that is, (M; Є) ≺ (V; Є)). Applying the downward Löwenheim-Skolem Theorem, one can bound the cardinality of M. This tool enables one to capture various complicated closure arguments within the simple “≺”.However, in this paper, as in the paper [JT], we study the tool for its own sake. [JT] discussed various general properties of topological spaces in elementary submodels. In this paper, we specialize this consideration to the space of real numbers, ℝ. Our models M are not in general transitive. We will always have ℝ Є M, but not usually ℝ ⊆ M. We plan to study properties of the ℝ ⋂ M's. In particular, as M varies, we wish to study whether any two of these ℝ ⋂ M's are isomorphic as topological spaces, linear orders, or fields.As usual, it takes some sleight-of-hand to formalize these notions within the standard axioms of set theory (ZFC), since within ZFC, one cannot actually define the notion (M;Є) ≺ (V;Є). Instead, one proves theorems about M such that (M;Є) ≺ (H(θ);Є), where θ is a “large enough” cardinal; here, H(θ) is the collection of all sets whose transitive closure has size less than θ.
Publisher
Cambridge University Press (CUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Infinite Combinatorics;Handbook of the History of Logic;2012
2. Kunen and set theory;Topology and its Applications;2011-12
3. More reflections on compactness;Fundamenta Mathematicae;2003
4. Characterizingω 1 and the long line by their topological elementary reflections;Israel Journal of Mathematics;2002-12
5. On possible non-homeomorphic substructures of the real line;Proceedings of the American Mathematical Society;2002-02-12