Nitrogen mineralization and phosphorus solubilization due to rewetting of forest and paddy soils

Author:

Aragon Marco Rodel1,Asio Victor1

Affiliation:

1. Department of Agronomy and Soil Science, Visayas State University, Baybay, Leyte, 6521-A Philippines

Abstract

Rewetting of soils may cause an increase in phosphorus solubilization and nitrogen mineralization resulting in the release of bioavailable phosphates and nitrates which are vital for crop growth but are also associated with eutrophication of surface waters. The study was conducted to evaluate P solubilization and N mineralization due to drying and rewetting of forest and paddy soils under laboratory conditions. Forest and paddy soils were tested for water extractable P and mineralizable N (NH4+ and NO3–) after being subjected to drying and rewetting cycles for 7 and 14 days of drying. Soil samples were also analyzed for pH, OM, total N, total P, available P, and clay contents. Results indicated a significant increase in water-extractable P and total mineralized N for all the samples tested. N mineralization and P solubilization were correlated with OM, total N, available P, and clay. Findings also revealed that NH4+ concentration increased while that of NO3– decreased significantly for all the samples tested. The amounts of water-extractable P and NO3– released due to rewetting could potentially accelerate eutrophication if transported to bodies of water. They could also however benefit the growing plant.

Publisher

Annals of Tropical Medicine, Visayas State University

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3