Analysis of Unsupervised Machine Learning Techniques for an Efficient Customer Segmentation using Clustering Ensemble and Spectral Clustering
Author:
Publisher
The Science and Information Organization
Subject
General Computer Science
Link
http://thesai.org/Downloads/Volume13No10/Paper_16-Analysis_of_Unsupervised_Machine_Learning_Techniques.pdf
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advanced methods for target audience identification: enhancing marketing strategies through machine learning and data analytics;Journal of Modern Science;2024-08-20
2. Customer segmentation in e-commerce: a context-aware quality model for comparing clustering algorithms;Journal of Internet Services and Applications;2024-07-25
3. Unlocking travel narratives: a fusion of stacking ensemble deep learning and neural topic modeling for enhanced tourism comment analysis;Social Network Analysis and Mining;2024-04-12
4. Comparative Study of Unsupervised Learning Algorithms for Customer Segmentation;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28
5. Revolutionizing Business with AI: Unlocking Customer Insights Through Unsupervised and Supervised Learning for Behavior Prediction;Lecture Notes in Networks and Systems;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3