Influence of quality and quantity of crop residues on organic carbon dynamics and microbial activity in soil

Author:

,Afzal Tahseen,Wakeel Abdul, ,Cheema Sardar Alam, ,Iqbal Javed, ,Sanaullah Muhammad,

Abstract

An incubation study investigated the decomposition patterns, microbial activities, soil aggregates distribution, and soil organic carbon (SOC) contents, using four crop residues; wheat (Triticum aestivum L.), rice (Oryza sativa L.), cotton (Gossypium hirsutum L.), and maize (Zea mays L.), at low and high rates (10 and 20 g kg–1). An average increase of about 35% in cumulative C-CO2 emissions and 26% in soil microbial biomass carbon (MBC) was observed at high residue rates as compared to low rates. A positive and strong correlation (0.96) was found between C-CO2 emissions and MBC, and the effect of residue quality on decomposition was found to be less at high rates. The relative reduction in C-CO2 emissions by adding rice residues may be due to their high silica content. Differences in extracellular enzyme activities (EEA) with different residues indicated the effect of residue quality on microbial activities. Cotton residues increased β-glucosidase and chitinase activities by 41 and 38%, respectively, at high rates than at low rates. High maize residues also markedly increased chitinase activity by 41%, implying higher N cycling and fungal prevalence. Acid phosphatase activity was found to increase by about 25 to 32% with high rice and wheat residues, respectively. Higher EEA at high residues input likely reflected the microbial nutritional limitations. Crop residues raised SOC content from 0.7 under control to 1.0% at low residues input but not at high input. Increased macro-aggregates fraction at high residues input may be attributed to higher microbial activities. In summary, high residues input can minimize residue biochemical quality’s effect on decomposition, with no further increase in SOC content. While a positive effect on the soil MBC, but not on the SOC content, was observed at high residue input, suggesting moderation in the additions of organic amendments is key for SOC buildup. Crop residues, added at 10 g kg–1, may help maintain a positive SOC balance in the arid agroecosystems by moderating higher microbial activities and soil respiration.

Publisher

Soil Science Society of Pakistan

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3