PREFERENTIAL ATTACHMENT WITH FITNESS DEPENDENT CHOICE

Author:

Малышкин Юрий Андреевич

Abstract

Исследуется асимптотическое поведение максимальной степени вершины в графе предпочтительного присоединения с выбором вершины, основанном как на ее степени, так и на дополнительном параметре (пригодности). Модели предпочтительного присоединения широко используются для моделирования сложных сетей (таких как нейронные сети и т.д.). Они строятся следующим образом. Мы начинаем с двух вершин и ребра между ними. Затем на каждом шаге мы рассматриваем выборку из уже существующих вершин, выбранных с вероятностями, пропорциональными их степеням плюс некоторый параметр β>- 1. Затем мы добавляем новую вершину и соединяем ее ребром с вершиной из выборки, на которой достигается максимум произведения ее степени на ее пригодность. Мы доказали, что в зависимости от параметров модели возможны три типа поведения максимальной степени вершины - сублинейное, линейное и порядка /ln , где n - число вершин в графе. We study the asymptotic behavior of the maximum degree in the preferential attachment tree model with a choice based on both the degree and fitness of a vertex. The preferential attachment models are natural models for complex networks (like neural networks, etc.) and constructed in the following recursive way. To each vertex is assigned a parameter that is called a fitness of a vertex. We start from two vertices and an edge between them. On each step, we consider a sample with repetition of d vertices, chosen with probabilities proportional to their degrees plus some parameter β>-1. Then we add a new vertex and draw an edge from it to the vertex from the sample with the highest product of fitness and degree. We prove that the maximum degree, dependent on parameters of the model, could exhibit three types of asymptotic behavior: sublinear, linear, and of /ln order, where n is the number of edges in the graph.

Publisher

Tver State University

Subject

Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3